
DIFFERENTIAL ANALYSIS OF 
FLUID FLOW

A: Mathematical Formulation (4.1.1, 4.2, 
6.1-6.4)

B: Inviscid Flow: Euler Equation/Some 
Basic, Plane Potential Flows (6.5-6.7)

C: Viscous Flow: Navier-Stokes Equation 
(6.8-6.10)



Introduction
Differential AnalysisDifferential Analysis

There are situations in which the details of the flow 
are important, e.g., pressure and shear stress variation 
along the wing….
Therefore, we need to develop relationship that apply 
at a point or at least in a very small region 
(infinitesimal volume) with a given flow field.
This approach is commonly referred to as differential 
analysis.
The solutions of the equations are rather difficult.
Computational Fluid Dynamic (CFD) can be applied 
to complex flow problems.



PART A
Mathematical Formulation 

(Sections 4.1.1, 4.2, 6.1-6.4)



Fluid Kinematics (4.1.1, 4.2)Fluid Kinematics (4.1.1, 4.2)

Kinematics involves position, velocity and 
acceleration, not forces.
kinematics of the motion: 
velocity and acceleration of the fluid, and the 
description and visualization of its motion.
The analysis of the specific force necessary to 
produce the motion - the dynamics of the 
motion.



4.1 The Velocity Field
A field representation – representations of fluid 
parameters as functions of spatial coordinate

the velocity field
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A change in velocity results in an acceleration which 
may be due to a change in speed and/or direction.



4.1.1 Eulerian and Lagrangian
Flow Descriptions
Eulerian method: the fluid motion is given by completely 
prescribing the necessary properties as functions of space and time.

From this method, we obtain 
information about the flow in terms 
of what happens at fixed points in 
space as the fluid flows past those 
points.

Lagrangian method: following 
individual fluid particles as they move 
about and determining how the fluid 
properties associated with these 
particles change as a function of time. V4.3 Cylinder-velocity vectors

V4.4 Follow the particles
V4.5 Follow the particles



4.1.4 Streamlines, Streaklines and Pathlines

A streamline is a line that is everywhere tangent to the 
velocity field.
A streakline consists of all particles in a flow that have 
previously passed through a common point.
A pathline is a line traced out by a given flowing particle.

V4.9 streamlines
V4.10 streaklines
V4.1 streaklines



4.1.4 Streamlines, Streaklines and Pathlines
For steady flows, streamlines, streaklines and pathlines all 
coincide.  This is not true for unsteady flows.

Unsteady streamlines are difficult to generate 
experimentally, but easy to draw in numerical computation.
On the contrary, streaklines are more of a lab tool than an 
analytical tool.
How can you determine the unsteady pathline of a moving 
particle?



4.2 The Acceleration Field 

The acceleration of a particle is the time rate 
change of its velocity.
For unsteady flows the velocity at a given 
point in space may vary with time, giving rise 
to a portion of the fluid acceleration.
In addition, a fluid particle may experience an 
acceleration because its velocity changes as it 
flows from one point to another in space.



4.2.1 The Material Derivative 

Consider a particle moving along its pathline
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The Material Derivative 

Thus the acceleration of particle A,
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Acceleration

This is valid for any particle
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Material derivative
Acceleration: 

Total derivative, material derivative or substantial 
derivative
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Material derivative
The material derivative of any variable is the 
rate at which that variable changes with time 
for a given particle (as seen by one moving 
along with the fluid – the Lagrangian
descriptions)
If velocity is known, the time rate change of 
temperature can be expressed as,
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Example: the temperature of a passenger experienced on a train 
starting from Taipei on 9am and arriving at Kaohsiung on 12.



Acceleration along a 
streamline
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4.2.2 Unsteady Effects
For steady flow ( )/ 0,  there is no change in flow 
     parameters at a fixed point in space.
For unsteady flow ( )/ 0.

                         spatial (convective) derivative 
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4.2.3 Convective Effects
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4.2.3 Convective Effects

                     convective acceleration
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4.2.4 Streamline Coordinates
In many flow situations it is convenient to use a coordinate 
system defined in terms of the streamlines of the flow.
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4.2.4 Streamline Coordinates
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6.1 Fluid Element Kinematics

Types of motion and deformation for a 
fluid element. 



6.1.1 Velocity and Acceleration 
Fields Revisited

Velocity field representation 

Acceleration of a particle
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variations of the velocity in the direction of 
velocity,      ,      ,       cause a linear stretching
deformation.
Consider the x-component deformation:

6.1.2 Linear Motion and Deformation
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Linear Motion and Deformation

The volume of a fluid may change 
as the element moves from one 
location to another in the flow 
field. 
For incompressible fluid, the 
volumetric dilation rate is zero.



6.1.3 Angular Motion and Deformation

Consider an element under rotation and angular deformation

V6.3 Shear deformation



the angular velocity of OA is 

For small angles
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the angular velocity of the line OB is
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Angular rotation

The rotation,       , of the element about the z axis is defined 
as the average of the angular velocities        and        , if 
counterclockwise is considered to be positive, then,
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V4.6 Flow past a wing



Define vorticity

If                 or                 , then the rotation (and the vorticity ) 

are zero, and flow fields are termed irrotational.
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Otherwise the rotation will be associated with an angular 
deformation. 

Definition of vorticity



Different types of angular motions

Solid body rotation 

Free vortex
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Apart form rotation associated with these derivatives         
and         , these derivatives can cause the element to 
undergo an angular deformation, which results in a change
in shape of the element. 

The change in the original right angle is termed the shearing 
strain       ,

where        is considered to be positive if the original right 
angle is decreasing.
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Rate of shearing strain or rate of angular deformation
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The rate of angular deformation is related to a corresponding 
shearing stress which causes the fluid element to change in shape.

If                 , the rate of angular deformation is zero and this 
condition indicates that the element is simply rotating as an 
undeformed block.
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6.2 Conservation of Mass
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Conservation of mass:

In control volume representation (continuity equation):

(6.19)

To obtain the differential form of the continuity equation, 
Eq. 6.19 is applied to an infinitesimal control volume.



6.2.1 Differential Form of Continuity 
Equation
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Differential Form of Continuity Equation

Thus conservation of mass become 

In vector form 

For steady compressible flow

For incompressible flow
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6.2.2 Cylindrical Polar Coordinates

The differential form of continuity equation 
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For 2-D incompressible plane flow then, 

Define a stream function such that

For velocity expressed in forms of the stream 
function, the conservation of mass will be satisfied.  

6.2.3 The Stream Function
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The Stream Function

Lines along constant       are stream lines.
Definition of stream line 

Thus we can use       to plot streamline.
The actual numerical value of a stream line is not important but
the change in the value of         is related to the volume flow rate.
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Note：Flow never crosses streamline, since by definition the 
velocity is tangent to the streamlines. 

Volume rate of flow (per unit width perpendicular to the x-y
plane) 

In cylindrical coordinates the incompressible continuity 
equation becomes,
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Ex 6.3 Stream function



6.3 Conservation of Linear Momentum

Linear momentum equation

Consider a differential system with        and

Using the system approach then  
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6.3.1 Descriptions of Force Acting on the
Differential Element

Two types of forces need to be considered 
surface forces：which action the surfaces of the 

differential element.
body forces：which are distributed throughout the 

element.

For simplicity, the only body force considered is the 
weight of the element,

or

bF mgδ δ=
ur ur

xbx mgF δδ = yby mgF δδ = zbz mgF δδ =



Surface force act on the element as a result of its 
interaction with its surroundings (the components depend 
on the area orientation) 

nFδ Aδ 1Fδ 2FδWhere is normal to the area and and are parallel 
to the area and orthogonal to each other.



The normal stress       is defined as,

Sign of stresses
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we use       for normal stresses and       for shear stresses.σ τ

Note：Positive normal stresses are tensile stresses, ie, they tend to stretch the material.

Positive sign for the stress as 
positive coordinate direction
on the surfaces for which the 
outward normal is in the 
positive coordinate direction.
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6.3.2 Equation of Motion
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PART B
Inviscid Flow: 

Euler Equation/Some Basic, Plane 
Potential Flows 

(Sections 6.5-6.7)



For an inviscid flow in which the shearing stresses are all 
zero, and the normal stresses are replaced by -p, thus the 
equation of motion becomes

The main difficulty in solving the equation is the nonlinear 
terms which appear in the convective acceleration.
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6.4  Inviscid Flow
6.4.1 Euler’s Equation of Motion



For steady flow 

Take the dot product of each term with a differential length    
ds along a streamline 

thus the equation can be written as, 

6.4.2 The Bernoulli Equation 
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Since       and      are parallel, therefore 

Since

d s
v

V
uv
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Thus the equation becomes 
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where the change in           and  z is along the streamline , ,p V
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Equation after integration become
2

constant
2

dp V gz
ρ

+ + =∫
which indicates that the sum of the three terms on the left side of 
the equation must remain a constant along a given streamline. 

For inviscid, incompressible flow, the equation become, 
2

2 2
1 1 2 2

1 2
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2
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p V gz

p V p Vz z
g g

ρ

γ γ

+ + =
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※ For (1) inviscid flow
(2) steady flow
(3) incompressible flow
(4) flow along a streamline



6.4.3 Irrotational Flow
If the flow is irrotational, the analysis of 
inviscid flow problem is further simplified.
The rotation of the fluid element is equal 
to            , and for irrotational flow field,

Since               , therefore for an irrotational

flow field, the vorticity is zero.

V
r

×∇
2
1

0V∇× =
uv

V ζ∇× =
uv uv

ω
r

The condition of irrotationality imposes specific relationships 
among these velocity gradients. 
For example,

A general flow field would not satisfy these three equations. 

1 0
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Can irrotational flow hold in a viscous 
fluid?

According to the 2-D vorticity transport equation (cf. 
Problem 6.81)

Vorticity of an fluid element grows along with its 
motion as long as ν is positive.  So, an initially 
irrotatioal flow will eventually turn into rotational flow 
in a viscous fluid.
On the other hand, an initially irrotatioal flow remains 
irrotational in an inviscid fluid, if without external 
excitement.

2z
z

D
Dt
ζ ν ζ= ∇



In Section 6.4.2, we have obtained along a streamline that, 

Consequently, for irrotational flow the Bernoulli equation is 
valid throughout the flow field.  Therefore, between any flow 
points in the flow field,

6.4.4 The Bernoulli Equation for Irrotational Flow

( ) 0V V ds⎡ ⎤× ∇× ⋅ =⎣ ⎦
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∫

In an irrotational flow,                 , so the equation is zero 
regardless of the direction of      .d sv

※ For (1) Inviscid flow  (2) Stead flow 
(3) Incompressible flow  (4) Irrotational flow



For irrotational flow since 

The velocity potential is a consequence of the irrotationality
of the flow field (only valid for inviscid flow), whereas the 
stream function is a consequence of conservation of mass 
(valid for inviscid or viscous flow).

Velocity potential can be defined for a general three-
dimensional flow, whereas the stream function is restricted 
to two-dimensional flows. 

6.4.5 The Velocity Potential
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so that for an irrotational flow the velocity is expressible as 
the gradient of a scalar function φ . 



Thus for irrotational flow 

Thus, inviscid, incompressible, irrotational flow fields are 
governed by Laplace’s equation.
Cylindrical coordinate

( ) ( ) ( ) ( )

( )

1

1

where , ,

Since

r z

r z

r r z z

e e e
r r z

e e e
r r z

r z

V e e e

θ

θ

θ θ

θ
φ φ φφ

θ
φ φ θ

υ υ υ

∂ ∂ ∂
∇ = + +

∂ ∂ ∂
∂ ∂ ∂

∇ = + +
∂ ∂ ∂

=

= + +

v v v

v v v

uv v v v

2

0 ,  further with 0 for incomp. flow,
0

V V Vφ

φ

∇ × = = ∇ ∇ ⋅ =

⇒ ∇ =

uv uv r

In Cartesian coordinates,
2 2 2

2 2 2 0
x y z
φ φ φ∂ ∂ ∂

+ + =
∂ ∂ ∂

2 2

2 2 2

1 1 0r
r r r r z

φ φ φ
θ

∂ ∂ ∂ ∂⎛ ⎞ + + =⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

Thus for an irrotational flow with V φ= ∇
uv



Example 6.4
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6.5 Some basic, plane potential flows

Since the Laplace equation is a linear differential equation, 
various solutions can be added to obtain other solutions.
i.e.                      

The practical implication is that if we have basic solutions, we
can combine them to obtain more complicated and interesting 
solutions.
In this section several basic velocity potentials, which describe 
some relatively simple flows, will be determined.

1 2φ φ φ= +



For simplicity, only two-dimensional flows will be 
considered.

Defining the velocities in terms of the stream function, 
conservation of mass is identically satisfied.
Now impose the condition of irrotationality,

Thus
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Thus for a two-dimensional irrotational flow, the velocity 
potential and the stream function both satisfy Laplace 
equation.
It is apparent from these results that the velocity potential 
and the stream function are somehow related.
Along a line of constant ψ, dψ =0

Along a line of constant φ, dφ =0

   

,
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Therefore, the equations indicate that lines of constant φ
(equipotential lines) are orthogonal to lines of constant ψ
(stream line) at all points where they intersect.

Q: Why V2 > V1?  
How about p1 and p2?



6.5.1 Uniform Flow
The simplest plane flow is one for which the streamlines are 
all straight and parallel, and the magnitude of the velocity is 
constant – uniform flow.

   0
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U
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Thus, for a uniform flow in the positive x direction, 

The corresponding stream function can be obtained in a 
similar manner,
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The velocity potential and stream function for a 
uniform flow at an angle α with the x axis,
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6.5.2 Source and Sink- purely radial 
flow

Consider a fluid flowing radially outward from a line through 
the origin perpendicular  to the x-y plane.
Let m be the volume rate of flow emanating from the line (per 
unit length).

( )

Conservation of mass
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2r r
mr v m v

r
π

π
= =
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Source and Sink flows

If m is positive, the flow is radially outward, and the 
flow is considered to be a source flow.
If m is negative, the flow is toward the origin, and the 
flow is considered to be a sink flow.
The flow rate, m, is the strength of the source or sink.
The stream function for the source:

Note: At r=0, the velocity becomes infinite, which is of 
course physically impossible and is a singular point.
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6.5.3 Vortex-streamlines are 
concentric circles (vr=0)

Consider a flow field in which the streamlines are concentric 
circles. i.e. we interchange the velocity potential and stream 
function for the source.
Thus, let

where K is a constant.

 and  lnK ψ K rφ θ= = −
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Free and Forced vortex
Rotation refers to the orientation of a fluid element and not 
the path followed by the element.

Free vortex Forced vortex

If the fluid were rotating as a rigid body, such that           , 
this type of vortex motion is rotational and can not be 
described by a velocity potential.  

Free vortex: bathtub flow. 
Forced vortex: liquid contained in a tank rotating about its axis.

v Krθ =

V6.4 Vortex in a beaker



Combined vortex

Combined vortex: a forced vortex as a central core and a free 
vortex outside the core.

where K and r are constant and r0 corresponds to the radius of 
central core.
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0

   

   

v r r r
Kv r r
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Circulation
A mathematical concept commonly associated with vortex 
motion is that of circulation.

The integral is taken around curve, C, in the counterclockwise 
direction.
Note: Green’s theorem in the plane dictates

For an irrotational flow

therefore,

For an irrotational flow, the circulation will generally be zero.
However, if there are singularities enclosed within the curve, 
the circulation may not be zero.
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Circulation for free vortex

For example, the free vortex with
Kv
rθ =

( )
2

0
2       

2
K rd K K
r

π
θ π

π
Γ

Γ = = =∫
Note: However Γ along any path which does not include the 
singular point at the origin will be zero.

The velocity potential and stream function for the free vortex 
are commonly expressed in terms of circulation as,
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Example 6.6

For irrotational flow, the Bernoulli equation
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Determine an expression relating the surface shape to the 
strength of the vortex as specified by circulation Γ.
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6.5.4 Doublet
Consider potential flow that is 
formed by combining a source 
and a sink in a special way.
Consider a source-sink pair
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For small values of a

Doublet is formed by letting the source and sink approach one 
another (           ) while increasing the strength m (         ) so 
that the product ma/π remains constant.

Eq. 6.94 reduces to:

where K = ma/π is called the strength of the doublet. 
The corresponding velocity potential is

∞→m
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Doublet-streamlines

Streamlines for a doublet
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Summary of basic, plane potential flows



6.6 Superposition of Basic, Plane 
Potential Flows 
Method of superposition

Any streamline in an inviscid flow field can be 
considered as a solid boundary, since the conditions 
along a solid boundary and a streamline are the same-
no flow through the boundary or the streamline.
Therefore, some basic velocity potential or stream 
function can be combined to yield a streamline that 
corresponds to a particular body shape of interest.
This method is called the method of superposition.



6.6.1 Source in a Uniform Stream- Half-Body
Consider a superposition of a source and a uniform flow.
The resulting stream function is 

and the corresponding velocity potential is
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(6.97)

V6.5 Half-body



For the source alone

r
mvr π2

=

Let the stagnation point occur at x=－b, where

so

The value of the stream function at the stagnation point can be 
obtained by evaluating x at r=b and θ=π, which yields from 
Eq. 6.97

Thus the equation of the streamline passing through the 
stagnation point is,
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The width of the half-body asymptotically approaches 2πb.
This follows from Eq. 6.100, which can be written as

so that as θ→0 or θ→2π, the half-width approaches ±bπ.
)( θπ −= by

With the stream function (or velocity potential) known, the 
velocity components at any point can be obtained.
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Thus the square of the magnitude of the velocity V at any 
point is,
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With the velocity known, the pressure distribution can be 
determined from the Bernoulli equation,
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(6.101)

(6.102)

Note: the velocity tangent to the surface of the body is not zero; 
that is, the fluid slips by the boundary.



Example 6.7
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6.6.2 Rankine Ovals
Consider a source and a sink of equal strength combined 
with a uniform flow to form the flow around a closed body.
The stream function and velocity potential for this 
combination are,
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As in Section 6.5.4

The stream line ψ=0 forms a closed body.
Since the body is closed, all of the flow emanating from the source 

flows into the sink.
• These bodies have an oval shape and are termed Rankine ovals.

• The stagnation points correspond to the points where the uniform
velocity, the source velocity, and the sink velocity all combine to 
give a zero velocity.

• The location of the stagnation points depend on the value of a, m , 
and U.



The body half length:
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The body half width, h, can be obtained by determining 
the value of y where the y axis intersects the  ψ=0  
streamline.  Thus, from Eq. 6.105 with ψ=0, x=0, and y=h, 
It follows that
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Both l/a and h/a are functions of the dimensionless 
parameter Ua/m.
As l/h becomes large, flow around a long slender body is 
described, whereas for small value of parameter, flow 
around a more blunt shape is obtained.
Downstream from the point of maximum body width the 
surface pressure increase with distance along the surface. 
In actual viscous flow, an adverse pressure gradient will 
lead to separation of the flow from the surface and result 
in a large low pressure wake on the downstream side of 
the body.
However, separation is not predicted by potential theory.
Rankine ovals will give a reasonable approximation of 
the velocity outside the thin, viscous boundary layer and 
the pressure distribution on the front part of the body.

V6.6 Circular cylinder
V6.8 Circular cylinder with separation
V6.9 Potential and viscous flow



6.6.3 Flow around a circular cylinder
When the distance between the source-sink pair approaches 
zero, the shape of the Rankine oval becomes more blunt and 
approach a circular shape.
A combination of doublet and uniform flow will represent 
flow around a circular cylinder.
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Thus the stream function and velocity potential for flow 
around a circular cylinder are

The velocity components are

On the cylinder surface (r=a):
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Therefore the maximum velocity occurs at the top 
and bottom of the cylinder θ = ±π/2 and has a 
magnitude of twice the upstream velocity U.
The pressure distribution on the cylinder surface is 
obtained from the Bernoulli equation,
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where p0 and U are pressure and 
velocity for point far from the 
cylinder.



The figure reveals that 
only on the upstream part 
of the cylinder is there 
approximate agreement 
between the potential 
flow and the 
experimental results.



The resulting force (per unit length) developed on the 
cylinder can be determined by integrating the pressure over 
the surface.
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Both the drag and lift as predicted by potential theory for a 
fixed cylinder in a uniform stream are zero. since the pressure 
distribution is symmetrical around the cylinder.
In reality, there is a significant drag developed on a cylinder 
when it is placed in a moving fluid. (d’Alembert paradox)

Ex 6.8 Potential flow--cylinder



By adding a free vortex to the stream function or velocity 
potential for the flow around a cylinder, then

where Γ is the circulation
Tangential velocity on the surface (r=a):

θ
π

θφ

π
θψ

2
cos1

ln
2

sin1

2

2

2

2

Γ
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+=

Γ
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

r
aUr

r
r
aUr (6.119)

(6.120)
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∂
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This type of flow could be approximately created by placing a 
rotating cylinder in a uniform stream.  Because the presence of 
viscosity in any real fluid, the fluid in contact with the rotating 
cylinder would rotate with the same velocity as the cylinder, and 
the resulting flow field would resemble that developed by the 
combination of a uniform flow past a cylinder and a free vortex.

(6.121)



Location of the stagnation point

cylinder  thefromaway  located is       14/   if

surface on thelocation other  someat  is       14/1   if
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Force per unit length developed on the cylinder
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Γ
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∫

∫ ∫
For a cylinder with circulation, lift is developed equal to the 
product of the fluid density, the upstream velocity, and the 
circulation.

( )( )  +, counterclockwise  the  is downward
y

y

F U

U F

ρ= − Γ

+ Γ

The development of this lift on rotating bodies is called the 
Magnus effect.



6.7 Other Aspects of Potential Flow 
Analysis

Exact solutions based in potential theory will usually provide at 
best approximate solutions to real fluid problems.
Potential theory will usually provide a reasonable approximation
in those circumstances when we are dealing with a low viscosity
fluid moving at a relatively high velocity, in regions of the flow 
field in which the flow is accelerating.
Outside the boundary layer the velocity distribution and the 
pressure distribution are closely approximated by the potential 
flow solution.
In situation when the flow is decelerating (in the rearward 
portion of the bluff body expanding region of a conduit), and 
adverse pressure gradient is reduced leading to flow separation, 
a phenomenon that are not accounted for by potential theory.

V6.10 Potential flow



PART C
Viscous Flow: 

Navier-Stokes Equation
(Sections 6.8-6.10)



6.8 Viscous Flow
Equation of Motion

xx maF δδ = yy maF δδ = zz maF δδ =
zyxm δδρδδ =

Thus

yxxx zx
x
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When a shear stress is applied on a fluid:
• Fluids continuously deform (stress τ ~ rate of strain) 
• Solids deform or bend (stress τ ~ strain) 

dy
du

dt
d =α

strain rate ~ velocity gradient

from Fox, McDonald and Pritchard, Introduction to Fluid Mechanics.

6.8.1 Stress-Deformation Relationships



6.8.1 Stress-Deformation Relationships
For incompressible Newtonian fluids it is known that 
the stresses are linearly related to the rate of 
deformation. 

V1.6 Non-Newtonian behavior
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For incompressible, Newtonian fluids, the viscous  stresses are:
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for normal stresses
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∂
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for shearing stresses

( )1
3 xx yy zzp σ σ σ− = + +

But in normal stresses, there is additional 
contribution of pressure p, where

Can you figure out why the normal viscous stress σxx,visc can be 
expressed as  ?2 u

xμ ∂
∂

Consequently,

6.8.1 Stress-Deformation Relationships



For viscous fluids in motion the normal stresses are 
not necessarily the same in different directions, thus, 
the need to define the pressure as the average of the 
three normal stresses. 
Stress-strain relationship in cylindrical coordinate 
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Note: Notation         x: plane perpendicular to x coordinate
y: direction

xyτ

6.8.1 Stress-Deformation Relationships



6.8.2 The Navier-Stokes Equations
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The Navier-Stokes equations are considered to be 
the governing differential equations of motion for 
incompressible Newtonian fluids



In terms of cylindrical coordinate
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The Navier-Stokes Equations



6.9 Some Simple Solutions for
Viscous, Incompressible Fluids

There are no general analytical schemes for solving 
nonlinear partial differential equations, and each 
problem must be considered individually.
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Nonlinear terms



6.9.1 Steady Laminar Flow Between
Fixed Parallel plates
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Thus continuity indicates that                     
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Steady Laminar Flow Between Fixed 
Parallel plates
Thus 
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the constants are determined from the boundary 
conditions.

1

2
2

BCs :  0
Thus 0

1 
2

u for y h
C

pC h
xμ

= = ±
=

∂⎛ ⎞= − ⎜ ⎟∂⎝ ⎠

Thus the velocity distribution becomes,

( )2 21
2

pu y h
xμ

∂⎛ ⎞= −⎜ ⎟∂⎝ ⎠

which indicates that the velocity profile between 
the two fixed plates is parabolic.

Steady Laminar Flow Between Fixed 
Parallel plates

V6.11 No-slip boundary conditions

V6.13 Laminar flow



The volume rate of flow 
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∫ ∫

The pressure gradient is negative, since the pressure 
decreases in the direction of the flow. 

Steady Laminar Flow Between Fixed 
Parallel plates



If Δp represents the pressure drop between two 
points a distance apart, thenl

3 3 22 2 ,     
3 3 2 3
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Steady Laminar Flow Between Fixed 
Parallel plates

The maximum velocity umax , occurs midway y=0  between 
the two plates, thus

Vu
x
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2
3  or                 
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The pressure field 

The above analysis is valid for                                 
remains below about 1400 

Problem 6.88: 10 tons on 8psi

( )

( )1 0

p gy f x

pf x x p
x

ρ= − +

∂⎛ ⎞= +⎜ ⎟∂⎝ ⎠
where      is a reference pressure at x=y=0 

Thus the pressure variation throughout 
the fluid can be obtained from 

0
pp gy x p
x

ρ ∂⎛ ⎞= − + +⎜ ⎟∂⎝ ⎠ 2Re V hρ
μ

=

0p

Steady Laminar Flow Between Fixed 
Parallel plates



6.9.2 Couette Flow
Therefore 

2
1 2

1
2

pu y C y C
xμ

∂⎛ ⎞= + +⎜ ⎟∂⎝ ⎠

or in dimensionless form 

The actual velocity profile will depend on the 
dimensionless parameter 

This type of flow is called Couette flow.

boundary conditions
u=o  at  y=0, u=U  at  y=b
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Couette flow
The simplest type of Couette flow is one for which the 
pressure gradient is zero i.e. the fluid motion is caused 
by the fluid being dragged along by the moving 
boundary. 

Thus

0p
x

yu U
b

∂
=

∂

=

which indicates that the velocity varies linearly 
between the two plates.

e.g. ： Journal bearing
ro-ri << ri

The flow in an unloaded 
journal bearing might be 
approximated by this simple 
Couette flow.



Example 6.9Example 6.9
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on the film surface x=h, we assume that the shearing stress is 
zero 
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2nd integration
2

2

0 2 0

2
0

2
00 0

3

0

2
0

2

2

3

h h

hx x C

x V C V
hx x V

hq dx x x V dx

hq V h

γ γυ
μ μ

υ
γ γυ
μ μ

γ γυ
μ μ

γ
μ

= − +

= = ∴ =

= − +

⎛ ⎞
= = − +⎜ ⎟

⎝ ⎠

= −

∫ ∫

The average film velocity
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>Only if             , will there be a net upward flow of liquid.

Q: Do you find anything weird in this problem?



6.9.3 Steady, Laminar flow in 
Circular Tubes

Hagen–Poiseuille flow or Poiseuille flow 
steady, laminar flow through a straight circular tube 
of constant cross section
Consider the flow through a horizontal circular tube 
of radius R

Assume the flow is parallel
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Steady, Laminar flow in Circular Tubes

Thus 
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Integration of equations in the r and θ directions
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which indicate that the pressure is hydrostatically 
distributed at any particular cross section and the z
component of the pressure gradient,          , is not a 
function of r or θ.
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Steady, Laminar flow in Circular Tubes
the equation of motion in the z direction 

Boundary conditions 

2
1

2
1 2

1 1

1
2

1 ln
4

z

z

z

v pr
r r r z

v pr r C
r z

pv r C r C
z

μ

μ

μ

∂∂ ∂⎛ ⎞ =⎜ ⎟∂ ∂ ∂⎝ ⎠
∂ ∂⎛ ⎞= +⎜ ⎟∂ ∂⎝ ⎠

∂⎛ ⎞= + +⎜ ⎟∂⎝ ⎠

At r=0, vz is finite at the center of the tube, thus C1=0

At r=R, vz =0, then 2
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Thus the velocity distribution becomes,
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That is, at any cross section, the velocity distribution is parabolic.



Steady, Laminar flow in Circular Tubes
Volume flow rate 
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6.9.4 Steady, Axial, Laminar Flow in 
an Annulus

B.Cs：vz=0 at r=ro and r=ri
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The maximum velocity occur at the ,         mrr = 0zv r∂ ∂ =

( )
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The maximum velocity does not occur at the mid point of the 
annulus space, but rather it occurs nearer the inner cylinder. 

To determine Reynolds number, it is common practice to use an 
effective diameter “hydraulic diameter” for on circular tubes.

μ
ρ VD

R h
e =Thus the flow will remain laminar if                  remains below 2100.
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area sctional-cross4×

=hD



6.10 Other Aspects of Differential 
Analysis

The solutions of the equations and not readily available. 
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6.10.1 Numerical Methods
Finite difference method
Finite element ( or finite volume ) method
Boundary element method

V6.15 CFD example
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